Introduction

✤ research at the interface of physics and biology

Some questions:

<u>Every piece of detail seems to matter</u> in molecular biology, nevertheless biological organisms are very robust, capable of withstanding or adapting to large perturbations. What are the secrets?

A complex system requires multiple sub-components to be in place before the function of the whole system can be realized; how can such systems self-organize in an evolutionary process?

Design principles of complex adaptive systems

role of theory in biology:

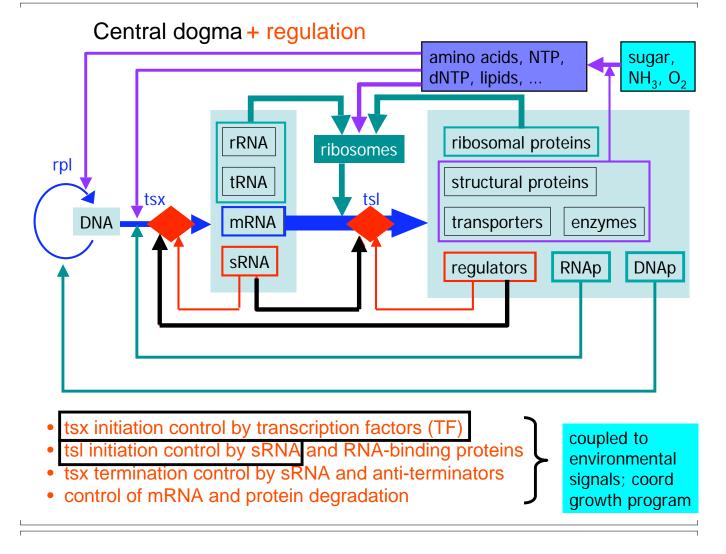
- link across different scales, e.g., from components to systems -- how?
- formulate constraints and expectation -- why?
- make the <u>right</u> conceptual simplifications [cf: entropy and heat engine]

→ new concepts and principles from new perspectives

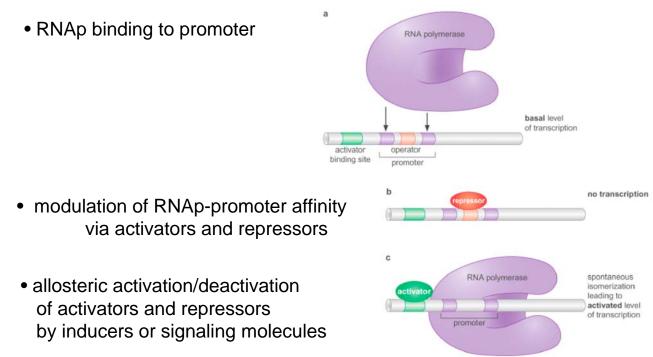
This series: quantitative molecular biology of bacteria

Bacterial physiology (E. coli)

\Leftrightarrow growth glucose + NH₃ + O₂ **\Rightarrow** biomass

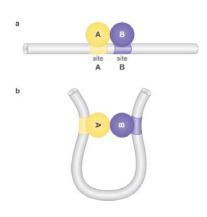

survival

bacteria can <u>sense</u> the environment and <u>adjust</u>

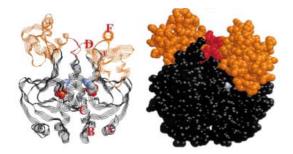

"life style" according to the growth condition/medium

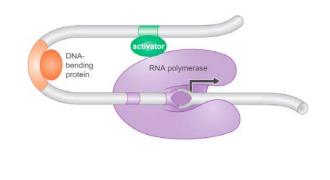
- exponential growth: doubling time from 20 min to > 200 min
- coping with stressful conditions:
 - motility: flagella synthesis and chemotaxis
 - osmotic response: porin synthesis
 - heat shock response: chaperons
 - SOS response (e.g., to DNA damage)
 - quorum sensing, biofilms, bacterial community
- non-growth condition
 - stationary phase
 - dormancy
 - sporulation (e.g., *B. subtilis*)
 - competence, conjugation (exchange of genetic materials)

transcriptional initiation control



→ net result: rate of tsx init dependent on cellular conc of activators/repressor controlled, e.g., by inducer molecules


- Molecular determinants of transcriptional initiation control
 - protein-DNA interaction


- protein-protein interaction

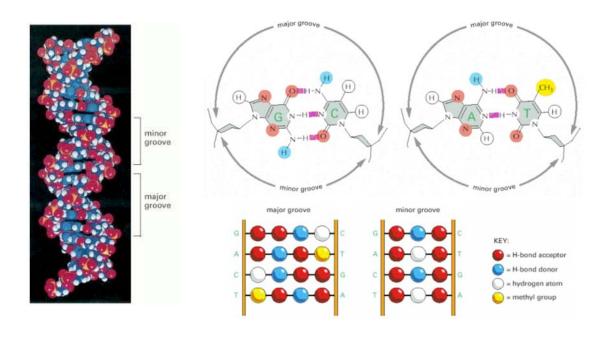
- protein-ligand interaction

- necessity of DNA looping

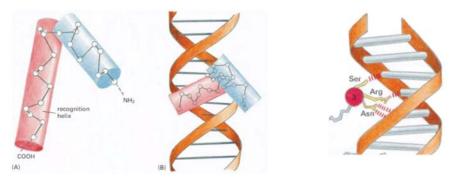
Topic 1: Protein-DNA Interaction

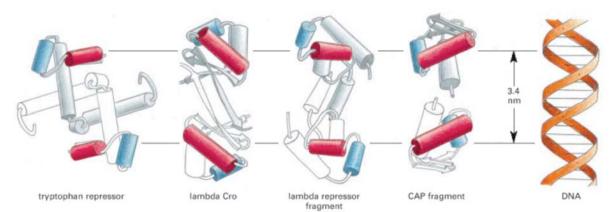
- Goals:
 - find DNA binding target seq for each transcription factor (TF)
 - find the affinity of a TF to its DNA target as a function of its cellular concentration *in vivo*
 - find how the TF-DNA affinity depends on the target sequence
- Problems:
 - thousands of TFs each with distinct target sequence; only a few characterized in detail experimentally
 - ab initio molecular calculation difficult even when TF-DNA cocrystal structure available
 - need to deal with the entire genomic DNA seqs in vivo

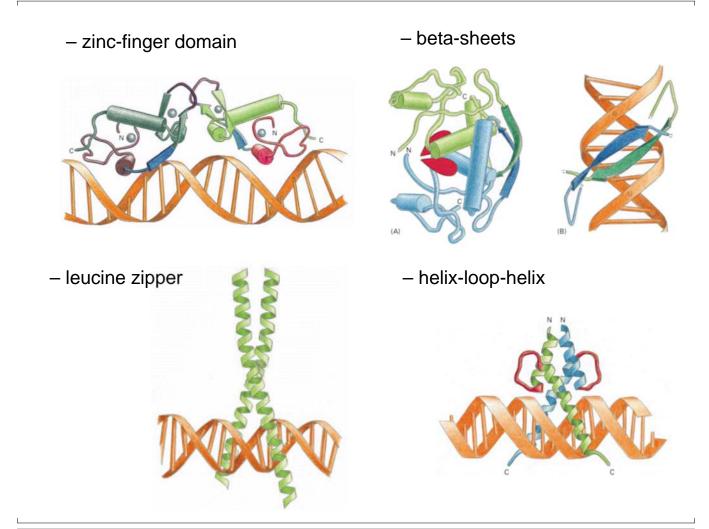
Statistical physics:


- → ways to think quantitatively about TF-DNA interaction in the absence of detailed microscopic information
- → link from molecule to function (an illustrative case)

A. Empirical facts


- 1. Transcription Factors
 - size: ~5nm (10-20 bp)

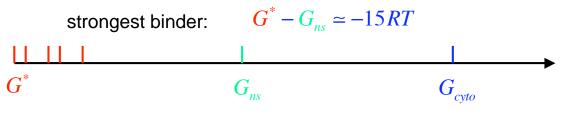

• molecular basis of sequence recognition



- various molecular strategies
 - Helix-Turn-Helix

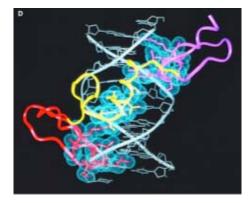
well-known examples in bacteria (note: homodimers)

- 2. DNA binding sequences
 - typically 10-20 bp in bacteria


protein	target sequence
lac repressor	5' ААТТGTGAGCGGATAACAATT 3' ТТААСАСТСGCCTATTGTTAA
CRP	TGTGAGTTAGCTCACT ACACTCAATCGAGTGA
λ repressor	TATCACCGCCAGAGGTA ATAGTGGCGGTCTCCAT

- lots of sequence variants
- consensus sequence often palindromic
- common to have 2~3 mismatches from the core consensus sequence
 -- "fuzzy" binding motif

ATTCTGTAACAGAGATCACACAAA CCTTTGTGATCGCTTTCACGGAGC AAAACGTGATCAACCCCTCAATTT AACTTGTGGATAAAATCACGGTCT **GTTTTGTTACCTGCCTCTAACTTT TTAATTTGAAAATTGGAATATCCA** AATTTGCGATGCGTCGCGCATTTT TTAATGAGATTCAGATCACATATA AATGTGTGCGGCGAATTCACATTTA GAAACGTGATTTCATGCGTCATTT AAATGACGCATGAAATCACGTTTC TTGCTGTGACTCGATTCACGAAGT TTTTTGTGGCCTGCTTCAAACTTT GAATTGTGACACAGTGCAAATTCA ATAATGTTATACATATCACTCTAA CGATTGTGATTCGATTCACATTTA **GTTTTGTGATGGCTATTAGAAATT** GAACTGTGAAACGAAACATATTTT AATGTGTGTGTAAACGTGAACGCAAT **TTTGTGTGATCTCTGTTACAGAAT GTAATGTGGAGATGCGCACATAAA TTTTTGCAA**GCAACATCACGAAAT **TTAATGTGAGTTAGCTCACTCATT ATTATTTGCACGGCGTCACACTTT** ATTATTTGAACCAGATCGCATTAC TAATTGTGATGTGTGTATCGAAGTGTTGTGA......TCACA.....


3. TF-DNA interaction

- passive (no energy consumption)
- strong electrostatic attraction <u>indept</u> of binding seq e.g., [*TF* - *DNA*] > 10 × [*TF*]_{free} for Lacl in 0.1M salt
 non-specific binding: G_{ns} - G_{cyto} ≈ -15*RT* (*RT* ≈ 0.62 kcal/mole at 37C)
- additional energy gained from hydrogen bonds to preferred sequences

• <u>graded increase</u> in binding energy for sequences with partial match to the preferred sequence

• relative binding affinity for Mnt

binding energy matrix

	0		(in unit of kT \approx 0.6 kcal/mole)								
pos.	10	11	12	13	14	15	16	17			
A	1.8	2.4	1.6	1.0	0	2.1	0.8	1.1			
C	2.4	1.9	4.2	2.1	0.3	0	0	0			
G	0	1.6	0	0	1.2	3.2	1.0	1.2			
T	3.0	0	2.2	2.2	0.6	2.2	0.7	0.3			
pos. 10 11 12 13 14 15 16 17 A 1.8 2.4 1.6 1.0 0 2.1 0.8 1.1 C 2.4 1.9 4.2 2.1 0.3 0 0 0 G 0 1.6 0 0 1.2 3.2 1.0 1.2 T 3.0 0 2.2 2.2 0.6 2.2 0.7 0.3											

(D.S. Fields, Y. He, A. Al-Uzri & G. Stormo, 1997) (from competitive binding expts)

- → weak energetic preference -- weak specificity
- → similar results for other TFs studied (e.g., Lacl, λ -Cl, λ -Cro)
- double mutation: binding energy approx additive
- Can we say something generic about the design of TF-DNA interaction from these facts/data?

B. Thermodynamics of DNA target recognition

• binding sequence (L nucleotides):

$$S = \{b_1, b_2, ..., b_L\}, \quad b_i \in \{A, C, G, T\}$$

binding constant (*in vitro*)
 fraction of sequence bound:

$$K(S) \equiv [P] \cdot [S] / [P \cdot S]$$

$$\approx e^{G(S)/kT}$$

$$p(S) = \frac{[P]}{[P] + K(S)}$$

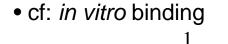
• approx. additive binding free energy

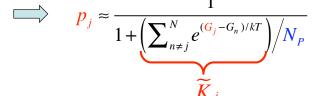
$G(S) \approx G^* + \sum_{i=1}^{L} \mathcal{G}_i(b_i) \iff \text{binding energy matrix} $ (in unit of kT ≈ 0.6 kcal/mole)											
	pos.		11						17		
	A	1.8	2.4	1.6	1.0	0	2.1	0.8	1.1		
binding free energy	C	2.4	1.9	4.2	2.1	0.3	0	0	0		
of "consensus" seq	G	0	1.6	0	0	1.2	3.2	1.0	1.2		
$S^* = \{b_1^*, b_2^*,, b_L^*\}$	T	3.0	0	2.2	2.2	0.6	2.2	0.8 0 1.0 0.7	0.3		
(D.S. Fields, Y. He, A. Al-Uzri & G. Stormo, 1997)											

in vivo binding: Effect of Genomic background

Q: occupation probab p_i of a "target site" S_i in genomic DNA?

model genomic DNA as a collection of *N* "sites" of *L* nt each $S_n = \{b_1^{(n)}, b_2^{(n)}, ..., b_L^{(n)}\}$ (with *N* ~ 10⁷ for *E. coli*)


 $S_{n=i}$


n = N

 $S_n = \{b_1^{(n)}, b_2^{(n)}, ..., b_L^{(n)}\} \quad (\text{with } N \sim 10^7 \text{ for } E. \text{ coll})$ in vitro binding constant: $K_n \equiv K(S_n) = [P] \cdot [S_n] / [P \cdot S_n] \propto e^{G_n / kT}$ binding energy: $G_n \equiv G(S_n) = G^* + \sum_{i=1}^L \mathcal{G}_i (b_i^{(n)})$ • single TF in bacterium cell (assume TF confined to DNA) $p_j = \frac{e^{-G_j / kT}}{e^{-G_j / kT} + \sum_{i=1}^{-G_n / kT}} = \frac{1}{1 + \sum_{i=1}^{-G_n / kT}}$

• multiple
$$(N_P)$$
 TFs
• $p_j \approx \frac{1}{1 + \left(\sum_{n \neq j} e^{(G_j - G_n)/kT}\right)/N_P}}$
• cf: *in vitro* binding
 $p(S) = \frac{[P]}{[P] + K(S)} = \frac{1}{1 + K(S)/[P]}$

• effective *in vivo* binding constant

$$p(S) = \frac{1}{1 + K(S) / [P]}$$

- depends on competiton from the rest of the genome
- even for "strong" target ($G_j \ll G_n$),

large number of genomic sites (N) can make effective binding very weak

• since typical $N_P = 1 \sim 1000$ molecules/cell (nM), expect functional demand for $\widetilde{K}_j = 1 \sim 1000$ nM

$$\widetilde{K}_{j} = e^{\sum_{i=1}^{L} \mathcal{G}_{i}(b_{i}^{(j)})/kT} \cdot \sum_{n=1(\neq j)}^{N} e^{-\sum_{i=1}^{L} \mathcal{G}_{i}(b_{i}^{(n)})/kT} \approx \begin{cases} 1 & \text{consensus seq} \\ e^{1 - 3} = 3 - 10 & \text{one mismatch} \end{cases}$$
$$\equiv Z \approx 1 \quad \text{(Mnt matrix applied to E. coli genome)}$$

→ effect of the rest of genome: equivalent to a single site S*
 → K̃_j tunable in the desired range by "adjusting" no. mismatches Note: for the Lac repressor, K₀₁ ≈ 1 pM *in vitro* while K̃₀₁ ≈ 3 nM

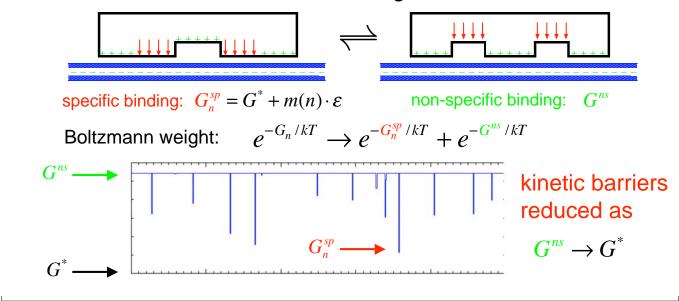
How to "set"
$$Z \approx 1$$
?

$$Z = \sum_{n=1(\neq j)}^{N} e^{-\sum_{i=1}^{L} \mathcal{G}_{i}(b_{i}^{(n)})/kT}} \approx N \cdot \mathbf{E} \left[\prod_{i=1}^{L} e^{-\mathcal{G}_{i}(b)/kT} \right]^{[\text{cf: Derrida's REM]}} = N \cdot \left[\sum_{b \in \{A,C,G,T\}} f_{b} \cdot e^{-\mathcal{G}_{i}(b)/kT} \right]^{L} \approx 1$$
iid sequence with nt frequency f_{b} Mnt matrix with f_{b} of *E. coli*
iid sequence with nt frequency f_{b} Mnt matrix with f_{b} of *E. coli*

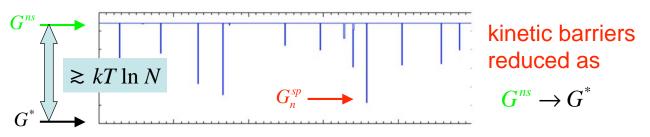
$$Z \approx 1 \text{ from the design of TF-DNA interaction } (\mathcal{G}_{i}(b), L)$$
we simpler model to gain insight

$$\mathcal{G}_{i}(b) = \begin{cases} 0 & \text{if } b = b_{i}^{*} \\ \varepsilon & \text{if } b \neq b_{i}^{*} \end{cases} \qquad Z \approx N \cdot \left[\frac{1}{4} + \frac{3}{4} e^{-\varepsilon/kT} \right]^{L}$$
to have $Z = 1$ for $N = 10^{7}$

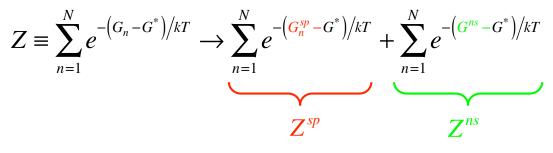
$$\widetilde{K} \approx e^{(\text{frmm})\cdot\varepsilon/kT} \quad (5-10x \text{ per mismatch})$$
biochem of TF-DNA interaction
allows for flexible tuning of \widetilde{K}

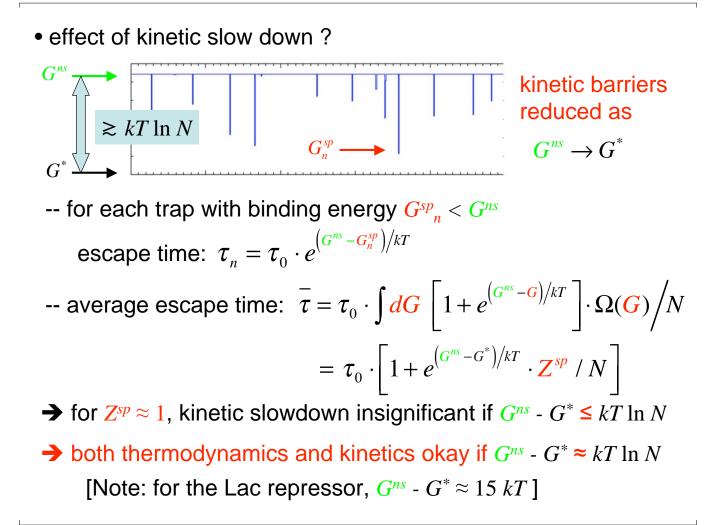

C. Kinetics of target search

• consider simple additive model of binding energy:


 $G_n = G^* + m(n) \cdot \varepsilon$ where $m(n) = \|S_n - S^*\|$

if valid for all $0 \le m \le L$, then the kinetics of target search would be slow since $\operatorname{var}(G) \approx \sqrt{L} \cdot \varepsilon \gg kT$

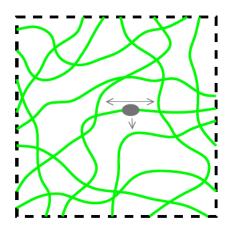

• two-state model of TF-DNA binding [Winter, Berg, von Hippel, 81]


• if G^{ns} is too low, thermodynamic specificity will be lost

statistical mechanics of the two-state model:

→ for $Z \approx 1$, need to have $Z^{sp} \approx 1$ and $Z^{ns} \leq 1$ → $G^{ns} - G^* \gtrsim kT \ln N \approx 16 kT$

Global search dynamics (smooth landscape)


• 1D diffusion along the genome:

$$N = 5 \times 10^6 \text{ bp} \approx 1 \text{ mm}$$

$$D_1 \approx 1 \ \mu \text{m}^2 / \text{sec}$$

$$T_{1D} \sim \frac{N^2}{D_1} \sim 10^6 \text{ sec}$$

• 3D diffusion direct from cytoplasm:

$$\begin{cases} V_{cell} \approx 3 \ \mu \text{m}^2 \\ \ell_{TF} \approx 15 \ \text{bp} = 5 \ \text{nm} \\ D_{cyto} \approx 10 \ \mu \text{m}^2 \ / \text{sec} \end{cases} \quad T_{3D} \sim \frac{1}{4\pi} \frac{V_{cell}}{\ell_{TF} \cdot D_{cyto}} \sim 10 \text{ sec}$$

- faster mainly due to the reduced redundancy of 3D random walk - but TFs typically associate strongly to DNA (subcompartmentalization) [e.g., for the Lac repressors, G^{cyto} - $G^{ns} \approx 15 \ kT$] • combined 1D/3D search: - assume random DNA packing - hopping dist: $N_x \sim 300$ bp - hopping time: $T_x \sim \frac{N_x^2}{D_1} \sim 10$ msec $T_{1D/3D} \sim \frac{1}{4\pi} \frac{V_{cell}}{N_x \cdot (N_y^2 / T_y)} \sim 10$ sec

• 3D diffusion direct from cytoplasm:

$$\begin{cases} V_{cell} \approx 3 \ \mu \text{m}^2 \\ \ell_{TF} \approx 15 \ \text{bp} = 5 \ \text{nm} \\ D_{cyto} \approx 10 \ \mu \text{m}^2 \ / \text{sec} \end{cases} \quad T_{3D} \sim \frac{1}{4\pi} \frac{V_{cell}}{\ell_{TF}} \sim 10 \text{ sec}$$

- faster mainly due to the reduced redundancy of 3D random walk
- but TFs typically associate strongly to DNA (subcompartmentalization) [e.g., for the Lac repressors, G^{cyto} - $G^{ns} \approx 15 \ kT$]

Summary:

• specificity of target recognition: $Z^{sp} \approx 1$

→ $\varepsilon \approx 2 \text{ kT}, L \approx 15 \text{ bp, leading to}$ $\widetilde{K}_j \approx e^{m_j \varepsilon/kT}$

➔ affinity of target sites become "programmable"

- kinetic accessability of target: G^{ns} $G^* \approx 15 kT$
- combined 1D/3D search
- → to what extent is "programmable" interactions used ?
- → search process for multimer?
- → eukaryotes?

many differences, e.g., $N_p = 10^2 \sim 10^4$ in budding yeast (need another von Hippel!)